①先求原函数的值域和定义域;②用y来表达x的式子;③交换x和y的位置。
例如:求y=e^x(x∈R,y>0)的反函数。
解:定义域为一切实数,值域大于0,用y来表达有x的式子。x=ln y交换x和y的位置得到:y=ln x。所以y=e^x(x∈R,y>0的反函数为y=ln x(x>0,y∈R)。
反三角函数与三角函数的有什么关系
反三角函数和三角函数互为反函数。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。
反函数x=f-1(y)的定义域是函数y=f(x)的值域,反函数x=f-1(y)的值域是函数y=f(x)的定义域。正函数与反函数的图像是关于y=x对称,最具有代表性的互为反函数就是对数函数与指数函数。
反三角函数的定义域
1、反正弦函数
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。
3、反正切函数
正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
4、反余切函数
余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
5、反正割函数
正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
6、反余割函数
余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。