反三角函数没有偶函数,有奇函数例如y=arcsinx,y=arctanx有非奇函数非偶函数,y=arccosx.非奇非偶sinx-1不等于sin(-x)-1也不等于-[sin(-x)-1],不符合奇函数和偶函数的要求。
什么是奇函数
奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数的性质:
1、两个奇函数相加所得的和或相减所得的差为奇函数。
2、一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
3、两个奇函数相乘所得的积或相除所得的商为偶函数。
4、一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
5、当且仅当f(x)=0(定义域关于原点对称)时,f(x)既是奇函数又是偶函数,奇函数在对称区间上的积分为零。
什么是偶函数
一般地,如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。
偶函数的公式:
1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x)如y=x*x;
2、如果知道图像,偶函数图像关于y轴(直线x=0)对称;
3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。
例如:f(x)=x^2,x∈R,此时的f(x)为偶函数。f(x)=x^2,x∈(-2,2](f(x)等于x的平方,-2<x≤2),此时的f(x)不是偶函数。
什么是反三角函数
反三角函数是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。
1、反三角函数是一种基本初等函数。它包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,其中反余割函数的范围在[-π/2,0)U(0,π/2]区间内。
2、三角函数与反三角函数的关系公式:sin(A+B)=sinAcosB+cosAsinBsin(A-B)。其同角三角函数的基本关系式:cosα·secα=1sinα/cosα=tanα=secα/cscα;cosα/sinα=cotα=cscα/secαsin2α+cos2α=1等等。
3、三角函数解题技巧:熟记公式,强化函数基础知识,因为掌握三角函数的基础知识才具备了灵活应对三角丽数问题的基础。数形结合,巧妙利用函数性质。多做三角函数的解题练习,并通过变换条件、变换题型等方式来做到对三角函数的一题多解、一题多变、多题一解和一题多问。