勾股定理中的邻边应指直角三角形中的一条直角边,它等于斜边的平方减去另一条直角边的平方,同开方。因为在直角三角形中,两条直角边的平方和等于斜边的平方。这就是勾股定理。移项后就变成了一条直角边的平方等于斜边的平方减去另一条直角边的平方,再两边开平方,取算术平方根。
勾股定理的证明方法是什么
勾股定理的证明方法有十六种:加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法。
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。
可以看到,这两个正方形的边长都是a+b,所以面积相等。即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。
1、以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。
2、AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。
3、证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。
勾股定理直角边怎么求
勾股定理的公式为a2+b2=c2,在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么则可以用勾股定理来计算。
a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理可得,a2+b2=c2→32+42=c2,即:9+16=25=c2,c=5。所以我们可以利用勾股定理计算出c的边长为5。
除此之外,勾股定理的逆定理还能用于判断三角形是直角、锐角或者是钝角三角形。其中AB=c为最长边,如果a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。