直观的说勾股定理是用面积法推导。具体方法有多种,最常用的是用四个全等三角形围成正方形,求围成的大正方形与内空小正方形的面积差等于四个全等三角形的面积和,得到勾股定理。
勾股定理是由哪几种来方法证明
1、正方形面积法
这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。
2、赵爽弦图
赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。
3、毕达哥拉斯证明
毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,发现两个正方形的面积和两个长方形的面积相等。
勾股定理的简介
勾股定理是一个基本的几何定理,是指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理,勾股定理的证明是论证几何的发端。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理的作用是什么
1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数”与有理数的差别,这就是所谓第一次数学危机。
3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。