求三角形的形心的方法:设三角形的三个顶点坐标分别为(x1,y1),(x2,y2),(x3,y3)形心坐标为(x,y)则x=(x1+x2+x3)/3,y=(y1+y2+y3)/3。
三角形的形心是什么
形心是三角形的几何中心,通常也称为重心,三角形的三条中线(顶点和对边的中点的连线)交点,此点即为重心。
1、重心定理:三角形的三条中线交于一点,这点到顶点的离是它到对边中点距离的2倍。该点叫做三角形的重心;
2、外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心;
3、垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心;
4、内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心;
5、旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。
形心是什么
如果一个对象具有一致的密度,或者其形状和密度具有某种对称性足以确定几何中心,那么它的几何中心和质量中心重合,该条件是充分但不是必要的。
有限个点总存在几何中心,可以通过计算这些点的每个坐标分量的算术平均值得到。这个中心是空间中一点到这有限个点距离的平方和的惟一最小值点。点集的几何中心在仿射变换下保持不变。
形心如何判断
当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形。形心是一个对称轴的截面,一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。把均匀平面薄片的重心叫做这平面薄片所占的平面图形的形心。
三角形中位线是什么
连接三角形两边中点的线段叫做三角形的中位线。三角形的中位线平行于三角形的第三边,并且等于第三边的1/2。
三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。
特点:若在一个三角形中,一条线段是平行于一条边,且等于平行边的一半(这条线段的端点必须是交于另外两条边上的中点),这条线段就是这个三角形的中位线。
三条中位线形成的三角形的面积是原三角形的四分之一三条中位线形成的三角形的周长是原三角形的二分之一。