一次函数是一条直线。
一次函数是什么线
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。
一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容,一次函数的图像是一条直线。
怎样判断一次函数是增函数还是减函数
增函数就是随x增大y增大,如y=x;
减函数就是随x增大y减小,如y=1/x;
一次函数的表达式是y=kx+b,x可取任何实数,只要k<0时,一次函数是减函数,k>0时,一次函数是增函数。
一次函数单调性的判断方法
1、定义法:即“取值(定义域内)→作差→变形→定号→判断”;
2、图像法:先作出函数图像,利用图像直观判断函数的单调性;
3、直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间。
4、求导法:假定函数f在区间[a,b]上连续且在(a,b)上可微,若每个点x∈(a,b)有f‘(x)>0,则f在[a,b]上是递增的;若每个点x∈(a,b)有f’(x)<0,则f在[a,b]上是递减的。
一次函数的表示方法
1、解析式法
用含自变量x的式子表示函数的方法叫做解析式法。
2、列表法
把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3、图像法
用图象来表示函数关系的方法叫做图像法。
一次函数的斜率定义
斜率,亦称“角系数”,表示一条直线相对于横坐标轴的倾斜程度。一条直线与某平面直角坐标系横坐标轴,正半轴方向的夹角的正切值,即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值无穷大,故此直线,不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率。
一次函数的图象与性质的口诀
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。