互质数是公因数只有1的两个非零自然数。
互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。所以公因数只有1的两个非零自然数,叫做互质数。如9和7,9和7都可以被1整除,但是没有另外一个数可以使9和7同时被整除,则9和7是互质数。
互质数是什么意思?
1、两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数。
2、多个数的若干个最大公因数只有1的正整数,叫做互质数。
3、两个不同的质数,为互质数。
4、1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质。
5、任何相邻的两个数互质。
互质数的判断方法:
能否正确、快速地判断两个数是不是互质数,对能否正确求出两个数的最大公约数和最小公倍数起着关键的作用。以下是几种判断两个数是不是互质数的方法。
一、概念判断法
公约数只有1的两个数叫做互质数。根据互质数的概念可以对一组数是否互质进行判断。如:9和11的公约数只有1,则它们是互质数。
二、规律判断法
根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。
1、两个不相同的质数一定是互质数。如:7和11、17和31是互质数。
2、两个连续的自然数一定是互质数。如:4和5、13和14是互质数。
3、相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。
4、1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。
5、两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。
6、两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。
7、较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。