菱形不是旋转对称图形。菱形是轴对称图形,也是中心对称图形。在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,对称轴有2条,即两条对角线所在直线,所以菱形也是中心对称图形。
轴对称图形性质
1、对称轴是一条直线。
2、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3、在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4、如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。
轴对称图形和中心对称图形的区别
区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。
实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。现将小学课本中常见的图形归类如下:既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。
只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等等。
只是中心对称图形的有:平行四边形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
一个图形既轴对称又中心对称一定有两条或两条以上的对称轴。
如何判定菱形
在同一平面内,菱形的判定:
一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边均相等的四边形是菱形;对角线互相垂直平分的四边形;两条对角线分别平分每组对角的四边形;有一对角线平分一个内角的平行四边形。
平行四边形的性质:
1、在两条平行线间的平行的高相等(简述为“平行线间的高距离处处相等”)。
2、如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
3、连接任意四边形各边的中点所得图形是平行四边形。
4、平行四边形的面积等于底和高的积。
5、过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
6、平行四边形是中心对称图形,对称中心是两对角线的交点。